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A version is offered of equations for large deformations of a nonshallow spherical shell
analogous to the version of equations of Feodos'’ev [1] for shallow shells.

Procedures are developed to overcome difficulties arising in the utilization of the
method of Bubnov-Galerkin in the version of Papkovich. For the determination of the load-
ing curve the method of transition to Canchy’s problem is used. The practical convergence
of the method of Bubnov-Galerkin in this problem is examined in detail. Since the solution
of the problem is determined in this case by two parameters A and 0,, where 0, is the angle
of inclination of the undeformed middle surface at the fixationd = RG,*/k, R ia the radius
of the middle surface, A is the thickness of the shell, the results of the analysis of the
behavior of the shell are presented for various A and 6, in the range 0 < 0, < 0.7,

0 A0

Tables are given for upper and lower critical pressures. Results are compared with

results obtained from the theory of shallow shells and from other theories.

1. We shall examine large axisymmetrical deformations of nonshallow apherical shell
loaded uniformly by a distributed extemnal pressure. As a basis we take the following
approximate relationships connecting displacements and deformations:

u =uy —[zf—(uo—%%,i), w = Wy, z=r —R (1.1)
&, == ?ryo =0, e, = e, g ==y -+ z2p) (1.2)
e = l?—sln—u—é (wosin © < up €05 0), g = — %3?9 ?;;o (1.3)

Here uo and wo are tangential and normal displacements of points of the middie
surface, R is the radius of the middle surface, r is the moving radius, @ is the polar
angle (Fig. 1).

The relationship between the components of deformation and stresses are written in
the following form:

T, =E, (e 4 pegll)),  Ty=E, (g, + pe,® (E,=Eh/(1—p)) (1.5
My =E, (9 +1e)). M,=E, (/D +pe ) (E;=ER[12(1 —p%) (1.6)

Here Ty, T, are the shear resultants, M,, M, are bending moments, E, is the rigidity
of the shell in tension, £, is the rigidity of the shell in bending.
Egs. (1.5) and (1.6) are obtained on the basis of Hooke's law.
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Then from Lagrange's principle the following
system of equations arises for the equilibrium of the
shell:

Ty 55+ (11— Ta)ctg=0 .7

oM, (OM 1 OM,

—a—e;' ae ae ) Ctg e —_— (le 1"13) —_

—R(T1+ Ts)— BT el}) — 0ATyctg 8 — qR* == 0
! (1.8)

Here @ is the angle of rotation of the normal
Fig. 1 with tespect to the middle surface r = R, which is
given by the relationship

1 ow u
In the derivation of Eqs. (1.7) and (1.8) identification of the internal geometry of the
shell with the geometry in the plane was not made. This distinguishes this system from
known versions of equations of equilibrium in the theory of shallow shells.
We shall examine a sliding hinge fixation which has the following boundary conditions:
for @ = 0,, where O, is the angle characterizing the fixation location of the dome (Fig. 1)

d? d
o Relgd g =0, w=0, $=0 (1.10)
Here i/ is a stress function
v 1 dy
Tl: sin9 T== COSO—(TQ_ (1.11)

If one now substitutes (1.3), (1.4), (1.6) and (1.11) into (1.8), then takes dw/df = @
and integrates the newly obtained equation with respect to 6 between the limits from 0 to 6,
we will finally have

Es [ de 2 ¥
' [ Hotg 0 g — @kt ctg? 0)] sing +
R R /40 (P sin8) oo R? sin? & 1
\ ~eosp 90 + 2q/sin® 5 e =0 (442

0

Two unknown functions w and ¢ enter into Eq. (1.12). The second relationship con-
necting w and i will be the equation of compatibility. In order to obtain it we substitute
(1.1) to (1.4) into (1.11) and eliminate u. As a result we shall have

d*
o s (ctg0+°we)—wcw 041+
Ex(1 —p[ cos*0 (dw . ]_ .
+ R [ZRSlﬂe(de) —cos 0 df) —wsin®|=10 (1.13)

Let us introduce nondimensional quantities with the aid of the following relationships

En3 h Re?
v=— Y @=—7® w=-ho, k=
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-
O==pe, &==0y, u‘o=—“(%(‘)‘“- qom%_(fhi)
1

Egs. (1.12) and (1.13) and conditions (1.10) are represented in the following form:

d*ps sinep \po sin®gp ecos®ep
‘;{\i}:o o + —(cosep -+ 23T o8 sp) — Py (gte sinep + - o ) =
2
=(p°em 2897»—{—3.51(1-5911;0 S % CO‘s iy {1.14}
1 d*p, sinep ) g cos’ep
1 ——p.’[ d{)qio + a9 dB C0SEP — o (ps sinep + “girep )] -
e 1
, d /dt (Yo (sin et) /e) ] (2sinep/2)2
= — 12 [q)o\po -+ A 5 cos 61 dt |+ Bgep® e (1.15)
o
% t 20, wolo, =0 [ =0 (1.16)
g tnectgep| =0, olomy =0 Poloy = .

2. Let us assume that it is necessary to determine the loading curve for the dome,
i.e. to find the dependence of g on its own nondimecsional displacement at the center

woip - o = f- It is easy to see that f is determined by the relationship:

0
/=§%(’) at @.1
1
System (1.14), (1.15) will be solved by the method of Bubnov-Galerkin. Let us assume

ma 2i+1 20 +3 - pectoe 99

=0

Here, boundary conditions {1.16) are satisfied.

It is necessary to note that the application of the procedure by Papkovich is com-
plicated in this case in contrast to the case of shallow shells, since Eq. {1.14) is an
equation with variable coefficients, If one takes into account relationships (2.2), the fol-
lowing expressions are obtained for ¢o and wo:

N
L w
Qo= 2) A (A= Ci =710 Co=0) =3
=0
N N
A ; 1 1,
) L 2 \ JURNL . SN
wo= ) 530" T~ (“’* =2 Cin (21’ Rl z)) 2.4
=0 {0

Therefore the right-hand part of (1.14) is an entire function of p,

d*, sinep  dijy , sin*ep 3 e cos*ep o
de., e dﬂ (cosep L2 waap) Yo ([".sms.p -+ 'E?nwep )== 2 fnperu2 (2.5)

n=Q
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It ‘is nataral to look for & solution of (2.5) in the form

)
o= 19,0 @, =9,° — 8,9, (2.6)
N
o0 «©
‘pn‘ = N+3 2 dkfn)Plk’ ‘p" “.p 2 ekpzk @.n
Kap) Aw=)

Here !fl; i{s the particular solution of the inhomogeneous Eq. (2.5) and q[fn“ is the
general solution of the corresponding homogeneous solution. Arbitrary constants

( Z a,™) (}J &) 2.9

k=0
are determined from the condition !, = 0.

Substitating (2.6) to {2.8) into (2.5) and equating coefficients of the left and right
sides of the transformed equation for equal powers of p, we obtain

1
L . .
dof Tdn+D(nF2 (2.9)
m 1
dy = ba+ kIt kF X (2.10)
- (n) (3 )Lb’
X{Z d,” F— 3 (2n+ 25 ¢ 3) 2| Eyy 1 (4" —2)| By, |] —
=0
K -3
_Eld (n)__f"_sg)_l'___._. [(Ih_p)_*‘“'f*-\‘-ki.f»__(n+s+1.5)(n+s+1)n
< ] {2k — 25 — 1)! k—s F=s)(k—s405 |f* k=1
¢ =1, €, = dkfl)’ k>t @.41)

Here E, are Euler’s numbers, B, are Bemoulli’s numbers.
Relationships (2.9) to (2.11) are correct when § <% 7. We substitute (2.2) and (2.6)
into the left part of (1.15) and require that the obtained expreasion be orthogonal

(p"‘"s - y,,p’”' ), r=1,2,..,N.
In this manner we obtain an algebraic system of equations of the third order for de-
dermination of C; _ ,:

N N
} 2 N
Z Ciﬂ. [Ai“ +A Azr{z‘?] }-12 2 C£+1(’n+1Aimn+

=0 =0 n=0
N N N
1
+}J Z Z Ci-H n+l +1A{1.jm=Am70 (2.12)
1==0 n==0 j=0

Coefficients 4in: 22. Aimn. Ainjm depend on the parameter £ = 6. Conse-

quently the nonlinear oroblem of stability under examination in this case will have two
parameters ( 2 = R0/} and g = 8,), which substantially complicates the examina-
tion of the problem.

For determination of C_ + 1 and go we utilize the idea presented in {21 applied to the
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investigation of a shallow spherical dome . As independ-
ent parameter either the nondimensional displacément

o0
f=Sc,, (- ___1 (2.13)
Zi “l(zk+z ).k+4)

or the nondimensional pressure go can be taken. Corres-
pondingly, from (2.12) and (2.13) we obtain the following
two systems of differential Eqa:

i

g

~L |/

/”‘\\\\J/i;

N/

! ;
| 1 B N
| | ! - N ¥
. £=0.187
Vi [ M
| J e
|
: ' , fj / ! f
1 2 !
7 0 2 4
Fig. 2 Fig. 3

N
2 d(;rl [(A (1)+7»"A{ (2)).]_3, Z(A;nm+An:m)Cn+1+

tgy n=9
N N d
£+ 3 S Ainjm + Anijm + Ajinm) C,.ﬂcjﬂ] — S A =0 (2.44)
n=0 j==0
N
w1 Wi _ g =1,2.. N 2.15
2"(zi+2 2i+4) ] (m=1,2...N) (215)
N,
2 du»l [(A ity + A24; (”)‘i'x v(Ainm'*' Apim) C,.+1+
= G0 n—o
N N
+ ) DNAinjim + Anijm + Ajinm) c,,ﬂo,.,_l] — A, =0 2.16)
n=Q j==0
J dc
Z(..“,-—- ,’ ) "‘=;_’ (m=1,2,..., N) (2.47)
,‘=021+z 2i 4+ 4/ dgo qo

As initial data we may take elements of the unstressed state of the shell in the
abaence of loading, i.e. for f= 0, o = 0, C;,, = 0. The integration of systems (2.14),
(2.15) end (2.16), {2.17) was carried out by the Runge-Kutta method. In this case it is

convenient to integrate system (2.14), (2.15) as long as dge/df is not very large.
In the opposite case it is appropriate to integrate system (2.16), (2.17).
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The program was composed for the electronic
digital computer ‘Minsk-12’. It consisted of stand-
ard blocks and sllowed sutomatic switching of
integration from one system to the other.

Gﬁ_qc

3. Let us examine results of computations.
Curves go— f were computed for the following
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Fig. 6

combinations of values of parameters A and g:

£= 0.187 (A = 2, 4, 5, 12, 15, 30, 50, 70}
e=0.273 (A = 5, 12, 15, 30, 50,70}
e= 0.5 {A = 15, 30, 50, 70}

e==0.7{A = 30}

The selection of values of parameter A in its dependence on ¢ was determined from
the condition
(3.1)

R/h>50

It was found that the method of

Table 1 Bubnov-Galerkin gives satisfactory
accuracy on the basis of the fourth
f 1 2 ‘ 3 ‘ approximation for the upper and also
the lower critical loadings in the case
e=0.4187 A=2 A <5, & < 0.3. In the other cases,
i reliable results are obtained only for
2(2) 22325 22?30 22?37 (1}2"1)24 apper critical loadings. Table 1 is
2.0 2,902 2.922 2 998 2.928 presented for characterization of the
3:0 6.665 7.374 7.512 7.532 rate of convergence of values g,.
4.0 | 14.95 18.29 18.64 18.94 It is evident from the Table that

(Table 1, continued on the next page)

in the case A 5, ¢ < 0.3 the
fourth approximation differs from the
third by no more than 0.2%. In the
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{ Table 1 continued from previous page)

f 1 2 3 4
e=0.187, A=t
0.2 | 0.7739 | 0.8294 | 0.8304 | 0.8331
1.0 | 2.479 | 2.591 | 2.600 | 2.600
1.6 | 2.797 | 2.813 | 2.811 | 2.814
2.0 | 2.821 | 2.731 [ 2.695 | 2.698
2.6 | 2.932 | 2.655 | 2.550 | 2.548
3.0 | 3.265 | 2.920 | 2.793 | 2.785

e=0.187, A=5
1

1.074 1.168 1.183 2474
3.511 3.795 3.822 3.820
3.973 4.161 4.176 4.184
3.178 2.585 2.150 2.160
3.210 2.2064 1.53% 1.531
3.722 2.764 2.129 2.103

£=0.187, A==12

4479 5.999 6.111 5.788
20.57 23.57 23.63 23.16
30.96 341.04 30.23 30.80
32.87 36.13 28.12 28.34

e~ 0.187,  A==T0

174.0 ) 235.6 104. 4 113.1

839.8 1020 490.8 523.6
1605 1678 910.4 951.2
2249 2053 1268 1298

2022 2213 1570 1581

£-=0.273, A=35

N0 W = O
SCcooonN

oo

NN =D

e O
coocow

0.2 1.055 1.149 1.164 1.160
1.0 3.482 3.736 3.764 3.766
1.6 3.912 4.100 4.115 4.125
2.0 3.803 3.854 3.830 3.844
£==0.273, A==12
0.2 5.068 5.934 6.051 6.013
1.0 20.54 23.37 23.52 23.37
2.0 30.42 33.86 30.40 30.60

e=0.273, A=5T0

170.2 240.3 102.5 114.4
821.4 1037 482.6 544.6
1570 1702 897.2 1016
2248 2080 125% 1413
2857 2245 1558 1729
3100 2252 1812 1955
3379 2137 2010 2081

€=0.5, A=15

7.085 9.085 9.037 8.050
29.86 36.65 37-08 34.35
49.12 55.79 51.22 52.59

DR WN O
cooooow

N O
NON

(Table 1 continued on the next page)

case of lurge A this difference does
not exceed 3%,

In Fis. 2 and 3 the dependence
of go on f is shown, obtained in the
first to fourth approximations wheo
€ =0.187; A= 2.5. From these graphs
it is evident that the third and fourth
approximations are practically indis-
tinguishable. In cases & = 0.273;
A=15 and g =0.7; A = 30 satisfactory
agreement between the third and the
fourth approximation is achieved only
on segments of loading curves shown
in Figs. 5, 4 and 5. A summary table
of upper critical loadings is presented
for various values of € and A (Table 2).
It may be noted that with increasing
A for a given £ the upper critical
values g,* increase as is evident from
the presented table.

In the determination of displace-
ments it was possible to obtain satis-
factory accuracy on the basis of the
fourth approximation. In this con-
nectjon the approximation of the de-
flection curve was carried out by
means of a polynomial of tenth degree
in accordance with (2.2).

Io Figs. 6 to 8 various stages of
loading of shells are represented for
several values of € and A, In Fig. 6
the case £ = 0.273; A= 5 is examined.

Position I corresponds to loading
9o, which is less then the upper cri-
tical value. Position 1l corresponds
to loadiug ge* which is the upper
critical loading. The third position
correaponds to loading g4 exceeding
the upper criticel value.

In Fig. 7 the development of
equilibrium forms of the shell is
given for values of e = 0.273;

A =12, and, finally, in Fig. 8 three
positions of nonshallow spherical
segment are depicted for € = 0.7
and A = 30,

The magnitudes of upper critical
values obtained in this paper in the
case of g < 0.2; A <5 differ little
from quantities g4 for shallow
spherical shells.

For comparison we note that the
value g4t calculated in the fourth
approximation from the theory of
shallow domes will be go* = 2.84
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(Table 1 continued from pravious page) /;—s\\
I} { 2 3 ‘ —___
e=0.5, A=70 -7 o~ ~
0.2 153.5 168.0 93.51 100.9 o
1.0 740.3 1124 443.1 470.8 P T~a
2.0 1414 1813 831.4 865.6 e S
4.0 2569 2389 1483 1487 >
5.0 3055 2420 1760 1746
e=0.7, =30 Fig. 8
0.2 23.90 46.04 23.50 21.25
1.0 | 109.5 | 176.3 | 132.6 | 97.25 (A=4), g =4.22 (A =5) and the cor-
2.0 195.1 253.3 232.0 175.8 responding values from theory of non-
3.0 | 258.7 | 273.2 | 288.9 | 241.4  shallow domes are got = 2.84, go* = 4.22.
4.0 302.1 259.0 303.0 294.5 It is appropriate to mention the
noticeable effect of the nonshallow
character of the shell on the lower
Table 2
3 A=70 50 30 15 12 5 [
0.187 2121 901.14 251.3 50.05 30.8 4.184 2.814
0.273 2105 909.8 245.7 48.36 30.4 4.125
0.5 2441 1026 276.5 52.85
0.7 314.5

critical values. Thas for A = 4 we have g4~ = 2.78 according to the theory of shallow
shells and go = 2.53 from the theory of nonshallow shells. For A =5, go~ = 8.00 and
ge~ = 1.48, respectively. It may be noted that the theory of A.V. Pogorelov gives

substially higher values for upper critical loadings
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